
Analysis of Image Compression Algorithm：

GUETZLI

Lingyi Li

August 18, 2017

Abstract

How to balance picture size and quality is the core of image compression. This

paper evaluates Google's jpeg image compression algorithm Guetzli by comparing

with the traditional encoder Libjpeg-turbo in terms of compression rate,

compression time, memory usage and other aspects of the VTune optimization

software developed by Intel. Tests show that Guetzli can compress the jpeg image

by 20% to 30% on the basis of the existing compression algorithm, and there is no

change in the quality of the picture. But at the same time, the time to squeeze the

picture greatly increased. If the compression time is shortened, Guetzli will provide

new possibilities for image compression.

Key Word：Guetzli；Libjpeg-turbo；Image compression；VTune；

1. Guetzli Introduction

Guetzli is a Google JPEG encoder released in 2017, designed to achieve high visual

quality in the excellent compression density. Guetzli produces images that are

typically 20-30% smaller than the equivalent quality images generated by other

compression algorithms. The current calculation of Guetzli is very slow.

1.1 Guetzli Installation

Guetzli is open source. Google published all code on GitHub.

https://github.com/google/guetzli

See Appendix A.

1.2 Guetzli Features

Guetzli uses an iterative optimization process. In order to make the problem

simpler, the optimizer is not guided by the file size. Instead, it is driven only by

perceived quality. The aim is to create a JPEG encoding with a perceived distance

that is below and as close as possible to a given threshold. Each iteration produces

a candidate output JPEG, and finally selects the best one.

Guetzli uses the closed-loop optimizer to adjust the image in two ways:

optimizing the JPEG global quantization table and the DCT coefficients in each

JPEG block. Specific optimization process see below:

Figure 1 Guetzli optimization process（https://arxiv.org/pdf/1703.04421.pdf）

1.3 Butteraugli Metrics

Guetzli uses Google’s perceived distance metric Butteraugli as a source of

feedback in its optimization process. Butteraugli is a model that "evaluates color

https://github.com/google/guetzli
https://arxiv.org/pdf/1703.04421.pdf

perception and visual masking more thoroughly and in more detail than other

encoders." The goal is to find the smallest JPEG that the human eye cannot

distinguish from the original image.

 Butteraugli takes into account three visual features that most JPEG

encoders do not use. First, gamma correction should not be applied to each RGB

channel, respectively, due to the overlap of the sensitivity spectra of the cone. For

example, the amount of yellow light seen by the human eye is related to the

sensitivity of the blue light, so the blue change near the yellow can be less accurate.

The YUV color space is defined as a linear transformation of the gamma-

compressed RGB, and is therefore not sufficient to model this phenomenon.

Second, the resolution of the human eye in the blue is lower than that of the red

and green, and there is almost no blue receptor in the high-resolution region of the

retina, so that the high frequency variation of the blue can be less accurately

encoded. Finally, the visibility of the fine structure in the image depends on the

amount of visual activity nearby, that is, we can less precisely encode areas with

large amounts of visual noise. The above considerations make Guetzli to ensure

uniform loss of image.

2.Libjpeg-turbo Introduction

To test Guetzli performance, this article compares Guetzli with another commonly

used jpeg encoder, Libjpeg-turbo.

2.1 Libjpeg-turbo Installation

https://github.com/libjpeg-turbo/libjpeg-turbo

See Appendix B.

2.2 Libjpeg-turbo Features

https://github.com/libjpeg-turbo/libjpeg-turbo

Libjpeg-turbo is a branch of libjpeg that uses the SIMD instruction to speed up

baseline JPEG encoding and decoding, compressing bmp or ppm images into jpg

format.

3. Performance Testing

3.1 Testing Purposes

Compare Guetzli compressed images and Libjpeg-turbo compressed images with

the compression time and compression rate under different CPU and different

quality parameters.

3.2 Test Environment

System hardware environment

Platform Broadwell

Processor E5-2699 v4

Frequency 2.20 GHz

Max Turbo Frequency 3.50 GHz

Memory 8 * 32GB 2133 MHz

FSB/QPI Frequency 9.6 GT/s

Thread(s) per Core 2

Sockets 2

Number of Core per 22

L1d Cache 32KB

L1i Cache 32KB

L2 Cache 256KB

L3 Cache (Total) 56320KB

SMT/MUNA/TURBO ON

Table 1 CPU1 information

Platform Skylake

Processor 8180

Frequency 2.5 GHz

Max Turbo Frequency 3.5 GHz

Memory 12 * 16GB 2666 MHz

FSB/QPI Frequency 10.4 GT/s

Thread(s) per Core 2

Sockets 2

Number of Core per 28

L1d Cache 32KB

L1i Cache 32KB

L2 Cache 1024KB

L3 Cache (Total) 39424KB

SMT/MUNA/TURBO ON

Table 2 CPU2 information

System Software Environment

OS CentOS 7.3.1611

kernel 3.10.0

Compiler gcc:4.8.5 20150623

Table 3 System software environment

3.3 Test Implementation

Image Pixel Size (byte)

nightshot_iso_100.bmp 192*144 82998

head.bmp 444*600 799254

lagochungara.bmp 871*573 1499022

ahom3.bmp 1024*768 2359350

earth.bmp 2048*1024 6291510

 Table 4 Image information

Test five different sized bmp photos in order. In same CPU, first use Libjpeg-turbo

to compress bmp image into jpg format, then use Guetzli to compress the second

time under different quality coefficients. Change CPU for repeated operation.

 CPU selected are Intel E5-2688 V4 and Skylake 8180. Skylake is a higher

performance processor.

 Due to the minimum of Guetzli quality parameters is 84, select 84,90,95 three

parameters for comparison.

Command line：

 time -p ./cjpeg -outfile test.jpg image.bmp

 time -p ./bin/Release/guetzli --quality 84 test.jpg output.jpg

Finally, change single process to multi-process testing.

Multi-process code：

#include <stdlib.h>

#include <omp.h>

int main()

{

#pragma omp parallel for

for(int i=0; i<=1000; i++)

{

./bin/Release/guetzli —quality 84 test.jpg output.jpg;

}

}

Command line：

g++ omp.cc -fopenup

./a.out

3.4 Test Result

Single process

Table 5 single-process E5-2699 V4 test results

Table 6 single-process Skylake 8180 test results

Multi-process

Table 7 multi-process test results

3.5 Result Analysis

Analyzing data in section 3.4, the following graphs can be drawn:

• Image size comparison

Figure 2 Image size comparison

original
libjpeg-
turbo

guetzli

nightshot_iso_100.bmp 82998 4357 3366

head.bmp 799254 39063 33795

lagochungara.bmp 1499022 116070 95496

ahom3.bmp 2359350 40584 31022

earth.bmp 6291510 237097 190895

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

im
ag

e
si

ze
 (

b
yt

e)

Image Size Comparison

nightshot_iso_100.bmp

head.bmp

lagochungara.bmp

ahom3.bmp

earth.bmp

Figure 3 Image Size Comparison

According to Figure 2 and 3, Guetzli can compress additional 15% on the basis

of Libjpeg-turbo.

• Single-Process Compression Time Comparison (Different CPU)

libjpeg-turbo guetzli

nightshot_iso_100.bmp 4357 3366

head.bmp 39063 33795

lagochungara.bmp 116070 95496

ahom3.bmp 40584 31022

earth.bmp 237097 190895

0

100000

200000

300000

im
ag

e
si

ze
 (

b
yt

e)

Image Size Comparison

nightshot_iso_100.bmp

head.bmp

lagochungara.bmp

ahom3.bmp

earth.bmp

Figure 4 Single-Process Compression Time Comparison (Different CPU)

According to Figure 4, the larger the image size, the longer the Guetzli

compression time. Skylake 8180 can reduce the compression time by about 20%.

• Compression Time Comparison (Different quality)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80

co
m

p
re

ss
io

n
 t

im
e

(s
)

image size (byte) x 100000

Compression Time Comparison (Different CPU)

E5 2699 V4

SKL8180

Figure 5 Compression Time Comparison (Different quality)

According to Figure 5, the greater the quality factor, the shorter the

compression time of Guetzli.

• Compression Rate Comparison

Figure 6 Compression Rate Comparison

0

20

40

60

80

100

120

80 85 90 95 100

co
m

p
re

ss
io

n
 t

im
e

 (
s)

quality

Compression Time Comparison
(Different quality)

nightshot_iso_100.bmp

head.bmp

lagochungara.bmp

ahom3.bmp

earth.bmp

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

80 85 90 95 100

co
m

p
re

ss
io

n
 r

at
e

quality

Compression Rate Comparison

nightshot_iso_100.bmp

head.bmp

lagochungara.bmp

ahom3.bmp

earth.bmp

According to Figure 6, the higher the mass coefficient, the lower the

compression ratio.

• Memory Consumption Comparison

Figure 7 Memory Consumption Comparison

According to Figure 7, The larger the image size, the more memory the guetzli

consumes. Libjpeg-turbo consumes less memory and is basically the same.

• Multi-Process Throughout Comparison

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80

m
em

o
ry

 c
o

n
su

m
p

ti
o

n
 (

b
yt

e)

x
1

0
0

0
0

image size (byte) x 100000

Memory Consumption Comparison

libjpeg-turbo

guetzli

Figure 8 Multi-Process Throughout Comparison

According to Figure 8, Skylake 8180 can increase throughput by about 20%.

4. VTune Analysis

4.1 VTune Installation

 https://software.intel.com/en-us/-getting-started-with-intel-vtune-

amplifier-xe-2017

 See Appendix C.

4.2 VTune Introduction

The VTune Amplifier Performance Analyzer is a product of Intel Parallel Studio and

is a commercial application for software performance analysis based on 32-bit and

64-bit x86 machines. It has GUI (graphical user interface) and command line, and

provides Linux or Microsoft Windows operating system version.

nightshot_iso
_100.bmp

head.bmp
lagochungara

.bmp
ahom3.bmp earth.bmp

E5-2699 V4 49.50 4.54 1.78 1.74 0.46

SKL8180 63.45 5.31 2.14 2.33 0.50

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

th
ro

u
gh

t
(/

s)

Multi-Process Throughout Comparison

https://software.intel.com/en-us/-getting-started-with-intel-vtune-amplifier-xe-2017
https://software.intel.com/en-us/-getting-started-with-intel-vtune-amplifier-xe-2017

 VTune Amplifier assists in various code analysis, including stack sampling,

thread analysis and hardware event sampling. The analyzer results include details

such as the time spent in each subroutine.

 This paper focuses on analyzing the reason of longtime processing

through VTune hotspot analysis.

4.3 VTune Implementation

Use the command line on the root to test, copy the results to spark on the GUI to

display.

 source amplxe-vars.sh

 amplxe-cl -collect hotspots bin/Release/guetzli --quality 84 output1.jpg

output2.jpg

 amplxe-cl -report hotspots

4.4 VTune Result

• Summary

Figure 9 Summary: CPU Usage Histogram

• Bottom-up

Figure 10 Bottom-up：convolution CPU consumption time

As can be seen from Figure 10, convolution is the function that takes the longest

time.

• Caller/Callee

Figure 11 Caller/Callee：the caller of function convolution

• Specific code

Figure 12 Specific code

5. Conclusion

 Guetzli can compress the additional 20% to 30% on ordinary jpeg images,

and the the picture quality observed by naked eyes has not changed. But because

of its compression time is also lengthened, the performance is difficult to be

commercially used. According to the VTune hotspot analysis, if the cost of

convolution is decreased, the usability of Guetzli will be enhanced.

6. References

[1] https://arxiv.org/pdf/1703.04421.pdf

7. Appendix

7.1 Guetzli Installation

 1. copy source code

 git clone git@github.com:google/guetzli.git

 2.install libpng

 3.make

7.2 Libjpeg-turbo Installation

 1.copy source code

 git clone https://github.com/libjpeg-turbo/libjpeg-turbo.git

 2.install nasm

 yum install nasm

 3.mkdir build

 4.autoreconf –fiv

 5.cd build

 6.sh ../configure

 7.make

https://arxiv.org/pdf/1703.04421.pdf
mailto:git@github.com:google/guetzli.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git

7.3 VTune Installation

 1.scp spark@dl-bj:/home/jimin/parallel_studio_xe_2018_beta_update1_cluster

_edition.tgz .

7.4 Image example

earth.bmp 2048*1024 6291510

original

libjpeg-turbo (75)

guetzli quality 84

