Analysis of Image Compression Algorithm :
GUETZLI

Lingyi Li
August 18, 2017

Abstract
How to balance picture size and quality is the core of image compression. This
paper evaluates Google's jpeg image compression algorithm Guetzli by comparing
with the traditional encoder Libjpeg-turbo in terms of compression rate,
compression time, memory usage and other aspects of the VTune optimization
software developed by Intel. Tests show that Guetzli can compress the jpeg image
by 20% to 30% on the basis of the existing compression algorithm, and there is no
change in the quality of the picture. But at the same time, the time to squeeze the
picture greatly increased. If the compression time is shortened, Guetzli will provide

new possibilities for image compression.

Key Word : Guetzli ; Libjpeg-turbo ; Image compression ; VTune ;

1. Guetzli Introduction

Guetzli is a Google JPEG encoder released in 2017, designed to achieve high visual
quality in the excellent compression density. Guetzli produces images that are
typically 20-30% smaller than the equivalent quality images generated by other
compression algorithms. The current calculation of Guetzli is very slow.

1.1 Guetzli Installation

Guetzli is open source. Google published all code on GitHub.

https.//github.com/google/guetzli

See Appendix A.

1.2 Guetzli Features
Guetzli uses an iterative optimization process. In order to make the problem
simpler, the optimizer is not guided by the file size. Instead, it is driven only by
perceived quality. The aim is to create a JPEG encoding with a perceived distance
that is below and as close as possible to a given threshold. Each iteration produces
a candidate output JPEG, and finally selects the best one.

Guetzli uses the closed-loop optimizer to adjust the image in two ways:
optimizing the JPEG global quantization table and the DCT coefficients in each

JPEG block. Specific optimization process see below:

input image

@bal optimization

global parameters

|
@cal optimization

choose best JPEG

output JPEG

Figure 1 Guetzli optimization process (https://arxiv.org/pdf/1703.04421.pdf)

1.3 Butteraugli Metrics

Guetzli uses Google’ s perceived distance metric Butteraugli as a source of
feedback in its optimization process. Butteraugli is a model that "evaluates color

https://github.com/google/guetzli
https://arxiv.org/pdf/1703.04421.pdf

perception and visual masking more thoroughly and in more detail than other
encoders.”" The goal is to find the smallest JPEG that the human eye cannot
distinguish from the original image.

Butteraugli takes into account three visual features that most JPEG
encoders do not use. First, gamma correction should not be applied to each RGB
channel, respectively, due to the overlap of the sensitivity spectra of the cone. For
example, the amount of yellow light seen by the human eye is related to the
sensitivity of the blue light, so the blue change near the yellow can be less accurate.
The YUV color space is defined as a linear transformation of the gamma-
compressed RGB, and is therefore not sufficient to model this phenomenon.
Second, the resolution of the human eye in the blue is lower than that of the red
and green, and there is almost no blue receptor in the high-resolution region of the
retina, so that the high frequency variation of the blue can be less accurately
encoded. Finally, the visibility of the fine structure in the image depends on the
amount of visual activity nearby, that is, we can less precisely encode areas with
large amounts of visual noise. The above considerations make Guetzli to ensure

uniform loss of image.

2.Libjpeg-turbo Introduction

To test Guetzli performance, this article compares Guetzli with another commonly
used jpeg encoder, Libjpeg-turbo.

2.1 Libjpeg-turbo Installation

https://github.com/libjpeg-turbo/libjpeg-turbo

See Appendix B.

2.2 Libjpeg-turbo Features

https://github.com/libjpeg-turbo/libjpeg-turbo

Libjpeg-turbo is a branch of libjpeg that uses the SIMD instruction to speed up
baseline JPEG encoding and decoding, compressing bmp or ppm images into jpg
format.

3. Performance Testing

3.1 Testing Purposes

Compare Guetzli compressed images and Libjpeg-turbo compressed images with
the compression time and compression rate under different CPU and different
quality parameters.

3.2 Test Environment

System hardware environment

Platform Broadwell
Processor E5-2699 v4
Frequency 2.20 GHz
Max Turbo Frequency 3.50 GHz
Memory 8 *32GB 2133 MHz
FSB/QPI Frequency 9.6 GT/s
Thread(s) per Core 2

Sockets 2

Number of Core per 22

L1d Cache 32KB

L1i Cache 32KB

L2 Cache 256KB

L3 Cache (Total) 56320KB
SMT/MUNA/TURBO ON

Table 1 CPU1 information

Platform Skylake
Processor 8180
Frequency 2.5 GHz
Max Turbo Frequency 3.5GHz
Memory 12 *16GB 2666 MHz
FSB/QPI Frequency 10.4 GT/s
Thread(s) per Core 2
Sockets 2
Number of Core per 28

L1d Cache 32KB

L1i Cache 32KB

L2 Cache 1024KB
L3 Cache (Total) 39424KB
SMT/MUNA/TURBO ON

Table 2 CPU2 information
System Software Environment

OS CentOS 7.3.1611
kernel 3.10.0
Compiler gcc:4.8.5 20150623

Table 3 System software environment

3.3 Test Implementation

Image Pixel Size (byte)
nightshot_iso_100.bmp 192*144 82998
head.bmp 444*600 799254
lagochungara.bmp 871*573 1499022
ahom3.bmp 1024*768 2359350
earth.omp 2048*1024 6291510

Table 4 Image information
Test five different sized bmp photos in order. In same CPU, first use Libjpeg-turbo
to compress bmp image into jpg format, then use Guetzli to compress the second
time under different quality coefficients. Change CPU for repeated operation.
CPU selected are Intel E5-2688 V4 and Skylake 8180. Skylake is a higher
performance processor.
Due to the minimum of Guetzli quality parameters is 84, select 84,90,95 three
parameters for comparison.
Command line :
time -p ./cjpeg -outfile test.jpg image.bmp
time -p ./bin/Release/guetzli --quality 84 test.jpg output,jpg
Finally, change single process to multi-process testing.
Multi-process code :
#include <stdlib.h>
#include <omp.h>
int main()
{
#pragma omp parallel for
for(int i=0; i<=1000; i++)
{
/bin/Release/quetzli —quality 84 test.jpg output,jpg;

}

Command line :
g++ omp.cc -fopenup
Ja.out

3.4 Test Result

Single process

84 19196 0.89 3366 22.75%

82998 25368 0.03 4357 94.75% 90 19196 0.83 3624 16.82%
95 19196 0.83 3879 10.97%

84 36800 12.85 33795 13.49%

799254 25314 0.04 39063 95.11% 90 34848 11.28 35832 8.27%
95 36800 9.04 36900 5.54%

84 56040 26.12 95496 17.73%

E5-2699 V4 1499022 25330 0.04 116070 92.26% 90 55868 25.06 102766 11.46%
95 55868 21.28 109555 5.61%

84 78748 37.26 31022 23.56%

2359350 25316 0.04 40584 98.28% 90 77084 27.26 32562 19.77%
95 74344 23.87 33908 16.45%

84 182472 104.36 190895 19.49%

6291510 25314 0.05 237097 96.23% 90 182472 93.76 206747 12.80%
95 174792 93.27 220427 7.03%

Table 5 single-process E5-2699 V4 test results

0.74
82998 0.01 0.66
0.66
10.43
799254 0.01 8.89
7.13
21.73
SKL8180 1499022 0.01 20.19
18.57
30.68
2359350 0.02 22.30
19.63
91.95
6291510 0.02 81.50
81.46

Table 6 single-process Skylake 8180 test results
Multi-process

84 22.69 44.07 84 20.19 49.53

82998 90 20.55 48.66 82998 90 17.96 55.68
95 20.20 43.50 95 15.76 63.45

84 326.55 3.06 84 274.21 3.65

799254 90 280.34 3.57 799254 90 222.96 4.49
95 220.03 4.54 95 188.18 5.31

84 658.49 1.52 84 539.56 1.85

E5-2699 V4 1499022 90 618.13 1.62 SKL8180 1459022 90 510.93 1.96
95 561.95 1.78 95 468.20 2.14

84 892.16 112 84 781.23 1.28

2359350 90 653.18 1.53 2359350 90 565.02 1.76
95 575.17 1.74 95 429.91 2.33

84 2468.88 0.41 84 2272.84 0.44

6291510 90 2192.57 0.46 6291510 90 1989.99 0.50
95 2180.96 0.46 95 2002.44 0.50

3.5 Result Analysis
Analyzing data in section 3.4, the following graphs can be drawn:

Table 7 multi-process test results

e Image size comparison

image size (byte)

—@— nightshot_iso_100.bmp

—@— head.bmp

7000000

6000000

5000000

4000000

3000000

2000000

1000000

—@— lagochungara.bmp

ahom3.bmp
—@— earth.bmp

Image Size Comparison

N\

o— ——
original Iltbdfsg_ guetzli
82998 4357 3366
799254 39063 33795
1499022 116070 95496
2359350 40584 31022
6291510 237097 190895

Figure 2 Image size comparison

—@— nightshot_iso_100.bmp

—@— head.bmp

—@— lagochungara.bmp
ahom3.bmp

—@— earth.bmp

Image Size Comparison

300000
)
s 200000
=3
)
N
(%]
&
g —®— nightshot_iso_100.bmp
. —@— head.bmp
100000 lagochungara.bmp
ahom3.bmp
—@— earth.bmp
T — A
[)
libjpeg-turbo guetzli
—@— nightshot_iso_100.bmp 4357 3366
—@— head.bmp 39063 33795
lagochungara.bmp 116070 95496
ahom3.bmp 40584 31022
—@— earth.bmp 237097 190895

Figure 3 Image Size Comparison
According to Figure 2 and 3, Guetzli can compress additional 15% on the basis

of Libjpeg-turbo.

e Single-Process Compression Time Comparison (Different CPU)

Compression Time Comparison (Different CPU)
100

90
80
70

60 —@—E5 2699 V4

50 —@— SKL8180

40

compression time (s)

30
20

10

0 20 40 60 80

image size (byte) x 100000

Figure 4 Single-Process Compression Time Comparison (Different CPU)
According to Figure 4, the larger the image size, the longer the Guetzli

compression time. Skylake 8180 can reduce the compression time by about 20%.

e Compression Time Comparison (Different quality)

compression time (s)

120

100

80

60

40

20

Compression Time Comparison
(Different quality)

quality

100

—@— nightshot_iso_100.bmp

—@— head.bmp

—@— lagochungara.bmp
ahom3.bmp

—@— earth.bmp

Figure 5 Compression Time Comparison (Different quality)

According to Figure 5, the greater the quality factor, the shorter the

compression time of Guetzli.

o Compression Rate Comparison

compression rate

o]
2]
Yo
o
Yo
(93]

25.00%

20.00%

15.00%

10.00%

5.00%

0.00%

80

Compression Rate Comparison

quality

100

—@— nightshot_iso_100.bmp

—@— head.bmp

—@— lagochungara.bmp
ahom3.bmp

—@— earth.bmp

Figure 6 Compression Rate Comparison

According to Figure 6, the higher the mass coefficient, the lower the
compression ratio.

e Memory Consumption Comparison

Memory Consumption Comparison
20

8

S 18

=

< 16
o 14
>
=) 12
c
0 10
S
Q
£ 8 .
5 —@— libjpeg-turbo
2 6
3 4 —@— guetzli
>
S 2 ® ®
5
e 0

0 20 40 60 80
x 100000

image size (byte)

Figure 7 Memory Consumption Comparison
According to Figure 7, The larger the image size, the more memory the guetzli
consumes. Libjpeg-turbo consumes less memory and is basically the same.

e Multi-Process Throughout Comparison

Multi-Process Throughout Comparison

70.00
60.00
50.00
40.00

30.00

throught (/s)

20.00
10.00

0.00
nightshot_iso lagochungara

~100.bmp .bmp
@@= F[5-2699 V4 49.50 4.54 1.78 1.74 0.46
==@-SKL8180 63.45 5.31 2.14 2.33 0.50

head.bmp ahom3.bmp earth.bmp

Figure 8 Multi-Process Throughout Comparison
According to Figure 8, Skylake 8180 can increase throughput by about 20%.

4. VTune Analysis
4.1 VTune Installation

https://software.intel.com/en-us/-getting-started-with-intel-vtune-
amplifier-xe-2017

See Appendix C.
4.2 VTune Introduction

The VTune Amplifier Performance Analyzer is a product of Intel Parallel Studio and
is a commercial application for software performance analysis based on 32-bit and
64-bit x86 machines. It has GUI (graphical user interface) and command line, and
provides Linux or Microsoft Windows operating system version.

https://software.intel.com/en-us/-getting-started-with-intel-vtune-amplifier-xe-2017
https://software.intel.com/en-us/-getting-started-with-intel-vtune-amplifier-xe-2017

VTune Amplifier assists in various code analysis, including stack sampling,
thread analysis and hardware event sampling. The analyzer results include details
such as the time spent in each subroutine.

This paper focuses on analyzing the reason of longtime processing
through VTune hotspot analysis.

4.3 VTune Implementation

Use the command line on the root to test, copy the results to spark on the GUI to
display.

source amplxe-vars.sh

amplxe-cl -collect hotspots bin/Release/guetzli --quality 84 outputl.jpg
output2,jpg

amplxe-cl -report hotspots

4.4 VTune Result

e Summary

<no current project> - Intel VTune Amplifier

i &g b B WS @ | weome rooths X =
& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTELVTUNE AMPLIFIER 2018
4 [CollectionLog € Analysis Target # Analysis Type & Summar y @ Bottom-up & Caller/Callee @ Top-down Tree {4 Platform [butteraugli... 3
Elapsed Time : 114.245s
ime ¥ 1138205
L
0s

Top Hotspots

This section lists the most active functions in your application. Gptimizing these hotspot functions typically results in improving overall application performance

Fun Wodule CPU Time
c guetzli 393835
b BlockDiff guetzli 89705
b quetzli 55045
b siyChange guetzli 33085
libe 50 6 32625

CPU Usage Histogram
This histogram displays a percentage of the wall time the specific numbser of CPUS were running simultaneously. Spin and Overhead time adds to the ldle CPU usage value

Elapsed Time

TargetUtiization

Simultaneously Utilized Logical CPUs

Collection and Platform Info
This section provides information about this collection, including result set size and collection platform data.

Figure 9 Summary: CPU Usage Histogram

e Bottom-up

<no current project> = Intel VTune Amplifier - o x
B e P @®EF @ welom roolhs X =S
& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTELVTUNE AMPLIFIER 2018
9 B Collection Log €D Analysis Target A Analysis Type @ Summary @ Bottom-up <3 Caller/Callee @& Top-down Tree Platform [butteraugli... 3
Grouping: | Function / Call Stack v mm/_‘ CPUTime v
CPUTime [‘ Viewing - 10f93 + selected stack(s)
Function/ Call Stack Effective Time by Utilization B Module 5.5% (2.180s of 30.383s)

SpinTime | Overhead Time

Widle @Poor 1Ok @§ideal @ Over

guetzliConvolution - butteraugli.cc
guetzliIElur+0x174 - butteraugli.cc113

|~ Convolution

¥ = Blur — butteraugli::OpsinDynamicslr 13.4495 (D 05 0s | guetzl Blur quetziilbLitteraugli: Maske+ X121 - butter
~ guetzli: ButteraugliComparator:Sw 0.140s | 0s 0Os guetzli guetzli Switcl B Comparat...
~ guetzli: ButteraugliComparator:Co| 2.9505 @ 05 0s | guetzl guetzi omp: omparator
 guetzliz:ComputeOpsinDynamicsima¢ 5.310s ([l 0s 0Os guetzli guetzli::ComputeO etzli::(anonymo

= guetzliz:ButteraugliComparator:{ 03205 | 05 0s | guetzl quetzli StanB | guetziiPr Data+0xLa7d - pro

w guetzli :ButteraugliComparator::Co| 4.950s [l 0s 0s guetzli guetzli ButteraugliComparator::Compi guetzlilF Data+0x48 - proce.
= TryQuantMatrix — SelectQual 1.200s § 0s 0s | guetzl TryQuantMatrix guetzlilgu S+0X5Dd - proces
~ ProcessJpegData ~ Process| 0.150s | 0s 0s | guetzi ProcessIpegData quetzlilmair+0x645 - guetzli.cc:318
= guetzli::(anonymous namespg 3.5505 @ 0 0s | guetzl guetzliz:(ananymous namespace):Pro libc.s0.6_ibc_start_main+0xt4 - [unk

 guetzli::ButteraugliComparator:Comy| 5.0495 @B 0s 0s | guetzl quetzli: ButteraugliC omparator::Comp: guetzlil_start+0x28 - [unknown source f
~ TryQuantMatrix — SelectQuanty 1.289s § 0s 0s | guetzi TryQuantiatrix
~ ProcessJpegData ~— Processdp| 0.150s | 0s 0s | guetzl ProcessIpegData
= guetzii:(anonymous namespace 3.609s @ 0s 0s | guetzi quetzli: (anonymous namespace):Pro
v ~ Blur — butteraugli::ButteraugliComps| 9.2285 D 0s 0s | guetzl Blur :

~ TryQuantMatrix — SelectQuantMa 2.350s @ 0s 0s | guetzi TryQuantMatrix q

~ ProcessJpegData — ProcessJpeg| 0.300s | 0s 0s | guetzl ProcessIpegData

« guetzli: (anonymous namespace):] 6.568s ([l 0s 0Os guetzli guetzli:(anonymous namespace)::Pro

v Blur 16.707s (D 0s 0s guetzli Blur
= butteraugli: ButteraugliComparator s27s (D 0s 0Os guetzli butteraugli: Butterauglic omparator: ‘Ed
= TryQuantMatrix — SelectQuanti 2.179s @ 0s 0s | guetzl TryQuantMatrix
« ProcessJpegData — Processip| 0.280s | s 0s | guetzi ProcessIpegData
= guetzli::(anonymous namespace 6.068s 0s 0s | guetzl guetzli: (anonymous namespace):Pro
 butteraugli:Mask 81805 (D s 0s | guetzi butteraugli: Mask(std: vector< sta: vect
= guetzli:ButteraugliComparator::{ 0.480s | 0s 0s | guetzl quetzli: ButteraugliC omparator::StartB

¥ = butteraugli::ButteraugliComparat| 7.700s ([l 0s 0Os guetzli butteraugli: Butterauglic omparator: :Dif
~ TryQuantMatrix — SelectQual 1.9505 @ 05 0s | guetzl TryQuantMatrix
n ProcessJpegData — Process| 0.2a0s | 0s 0s | guetzi ProcessIpegData
= guetzli::(anonymous namespq 5.5105 @ 0s 0s | guetzl guetzli: (anonymous namespace):Pro

» ComputeBlockZeroingOrder 0.060s | s 05| guetzi ComputeBlockZeroingOrder
» ComputeldiDCT 0.320s | 0s 0s | guetzl Compute1diDCT
» ComputeldiDCT 0.130s | 0s 0s | guetzi Compute1diDCT
b ColorTransformYChCiToRGB 0.3605 | 05 0s | guetzl ColorTransformYChCIToRGE
- - — - . - - -
FILTER 1000% g | AnyProcess v | Thiead AnyThiead | AnyModule | AnyUtiization | User functions + 1 | Showinline functions | Functions only v

Figure 10 Bottom-up : convolution CPU consumption time
As can be seen from Figure 10, convolution is the function that takes the longest

time.

o Caller/Callee

<no current project> - Intel VTune Amplifier

CPU Time: Total ¥

CPUTime: Sel

CPU Time:

Function Effective Time by Utilization

0idie @Poor 10Ok W@ideal @Over

Effeciive Time by Uilization
Oldie @Poor DOk @ldeal

B over

] Callers

Effective Time by Utiization
Bidle @Poor 0Ok @ideal @ Over

v _linc_star| 100.0% |
_start » _start | 100.0% |
main 100.0% N 0.0% 0.0% 0s
guetzli:Process 100.0% NI 0.0% 0.0% 0s
ProcessJpegData 99.9% (S 0.0% 0.0% 0s
ProcessJpegData s9.0% (S 0.0% 0.0% 0s
quetzli Compa| 80.1% (GGG 0.0% 0.0% 0s
quetzi Proc| 76.4% NS 0.0% 00%| 0020
butteraugli Dift| 62.2% NG 0.0% 0.0% 0s
Comvolution 34.6% 0.0% 0.0% 39.383s (D
butteraugliz:OpsinDy 27.1% I 0.0% 00% 1510s|
butteraugli::Mask 21.9% (D 0.0% 0.0% 0.4889s |
lectQ 21.0% O 0.0% 0.0% 0s
TryQ 21.0% D 0.0% 0.0% 0s
butteraugli Diff 17.1% G 0.0% 0.0% 970s @
butteraugli Blo| 16.4% GEE 0.0% 00% 2.390s I
CompiteBlockZeroingOrder 16.2% W 0.0% 00% 0060s ——
Blur 15.8% @D 0.0% 0.0% 0.400s | | = RO
guetzli-ButteraugliComparator-Compa | 14.8% (@l 0.0% 00% 01705 Callees Effective Time by Utiization
Widle ®Poor o Ok @ ldeal @ Over
Blur 13.5% @ 0.0% 00% | 00108
butteraugli: Ede| 10.2% @B 0.0% 00% 01005 o8 lc R 000 5%
butteraugli Edg 9.6% @B 0.0% 00% 0.350s | _pmain[100.0% | E—
gustzli::ComputeD) 9.1% @ 0.0% 00% 0.160s
Blur 8.3% @ 0.0% 00% 0180
butteraugli TSquared 6.9% W 0.0% 0.0% 0.650s |
butteraugli 6.0% 0.0% 00% 55%4s @
Gamma 5.0% 0.0% 0.0% 0s
GammaPolynomial 5.0% 0.0% 0.0% 0s
butteraugliz:RationalPolynomial zoperat| 5.0% 0.0% 00% 1.400s |
butteraugli-:DiffPrecompute 3.3% 0.0% 00% 08105 |
EvaluateF olynomal<s> 3.3% 0.0% 0.0% 0s
cl 3.3% 0.0% 00% | 0.080s
cl 3.2% 0.0% 00% 06005 |
butteraugliz:CalculateDiffmap 3.0% 0.0% 00% 0.108s
butteraugli hange | 2.9% 0.0% 00% 33085 |
Ay Process

Figure 11 Caller/Callee : the caller of function convolution

Specific code

i Be Py @

]

<no current project> - Intel VTune Amplifier

butterau... %

Assembly grouping: | Address

4

Sou
Line

CPU Time: Total

Source

Effective Time by Utilization

@ idie @roor ok B ideal [l over

B o | o

Time| Ti

CPUTime v

Viewing - 10132 » selected stack(s)

89% (1.190s 0f 13.4495)

quetzlilConvolution - butteraugli.cc
guetzIilBIur+0x1a9 - butterauglicc:12L

94

99
100
101
102
103

Sel,

¥
// Interpolate linearly between the no-border scaling and bor
weight = (1.0 - border_ratio) * weight + border_ratio * weigh
double scale = 1.0 / weight;
for (size_t y = 8; y < ysize; ++y) {

double sum = 0.0;

for (int § = minx; § <= maxx; ++j) {

sum += inp[y * xsi.

_t ysize

double border
PROFILER FUNC;

ratio) {

double m = 2.25;

when m is incre

// Accuracy increa
0/ (2*
* diff * diff) < 2~ {-52}
Tabs

"

const double scaler =
// For
const int diff =

igna

igma) ;

m =9

ax<int>(1, m *

const int expn
std:

ize = 2 * diff + 1;

vector<float> expn(exp

for (int i = -diff; i <= diff; ++i) {

0.0%

osxf]
1.

0.0%| 0.
0.0%) 0.

0.0% 0.

0.0%| 0,

18.2% 0.0% 0.

Figure 12 Specific code

guetziilguetzli:: ComputeOpsinDynamic
guetziilguetzli- ButteraugliComparator
guetzlilguetzIi-:(anonymous namespace.
guetziiroc ssIpegDatat0xLa7d - pro
guetziiFroc essIpegData+0x48 - prace
guetzlilguetzIi- Frocess+0x5hd - proces.
guetzlilmain+0xB46 - guetzli ce 318
libc.s0 6!_libc_start_main+0xt4 - [unk
quetziil_strt+0x28 - [unknown source f

5. Conclusion

Guetzli can compress the additional 20% to 30% on ordinary jpeg images,
and the the picture quality observed by naked eyes has not changed. But because
of its compression time is also lengthened, the performance is difficult to be
commercially used. According to the VTune hotspot analysis, if the cost of

convolution is decreased, the usability of Guetzli will be enhanced.

6. References
[1] https://arxiv.org/pdf/1703.04421.pdf

7. Appendix

7.1 Guetzli Installation
1. copy source code
git clone git@github.com:google/quetzli.git

2.install libpng
3.make

7.2 Libjpeg-turbo Installation
1.copy source code
git clone https://github.com/libjpeg-turbo/libjpeg-turbo.git

2.install nasm
yum install nasm
3.mkdir build
4.autoreconf —fiv
5.cd build

6.sh ../configure
7.make

https://arxiv.org/pdf/1703.04421.pdf
mailto:git@github.com:google/guetzli.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git

7.3 VTune Installation
1.scp spark@dl-bj:/home/jimin/parallel_studio_xe_2018_beta_updatel_cluster
_edition.tgz .

7.4 Image example

earth.omp 2048*1024 6291510

}Iibjpeg-turbo (75)

{

guetzli quality 4

