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Abstract
How to balance picture size and quality is the core of image compression. This
paper evaluates Google's jpeg image compression algorithm Guetzli by comparing
with the traditional encoder Libjpeg-turbo in terms of compression rate,
compression time, memory usage and other aspects of the VTune optimization
software developed by Intel. Tests show that Guetzli can compress the jpeg image
by 20% to 30% on the basis of the existing compression algorithm, and there is no
change in the quality of the picture. But at the same time, the time to squeeze the
picture greatly increased. If the compression time is shortened, Guetzli will provide

new possibilities for image compression.
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1. Guetzli Introduction

Guetzli is a Google JPEG encoder released in 2017, designed to achieve high visual
quality in the excellent compression density. Guetzli produces images that are
typically 20-30% smaller than the equivalent quality images generated by other
compression algorithms. The current calculation of Guetzli is very slow.

1.1 Guetzli Installation

Guetzli is open source. Google published all code on GitHub.



https.//github.com/google/guetzli

See Appendix A.

1.2 Guetzli Features
Guetzli uses an iterative optimization process. In order to make the problem
simpler, the optimizer is not guided by the file size. Instead, it is driven only by
perceived quality. The aim is to create a JPEG encoding with a perceived distance
that is below and as close as possible to a given threshold. Each iteration produces
a candidate output JPEG, and finally selects the best one.

Guetzli uses the closed-loop optimizer to adjust the image in two ways:
optimizing the JPEG global quantization table and the DCT coefficients in each

JPEG block. Specific optimization process see below:
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Figure 1 Guetzli optimization process ( https://arxiv.org/pdf/1703.04421.pdf )

1.3 Butteraugli Metrics

Guetzli uses Google’ s perceived distance metric Butteraugli as a source of
feedback in its optimization process. Butteraugli is a model that "evaluates color


https://github.com/google/guetzli
https://arxiv.org/pdf/1703.04421.pdf

perception and visual masking more thoroughly and in more detail than other
encoders.”" The goal is to find the smallest JPEG that the human eye cannot
distinguish from the original image.

Butteraugli takes into account three visual features that most JPEG
encoders do not use. First, gamma correction should not be applied to each RGB
channel, respectively, due to the overlap of the sensitivity spectra of the cone. For
example, the amount of yellow light seen by the human eye is related to the
sensitivity of the blue light, so the blue change near the yellow can be less accurate.
The YUV color space is defined as a linear transformation of the gamma-
compressed RGB, and is therefore not sufficient to model this phenomenon.
Second, the resolution of the human eye in the blue is lower than that of the red
and green, and there is almost no blue receptor in the high-resolution region of the
retina, so that the high frequency variation of the blue can be less accurately
encoded. Finally, the visibility of the fine structure in the image depends on the
amount of visual activity nearby, that is, we can less precisely encode areas with
large amounts of visual noise. The above considerations make Guetzli to ensure

uniform loss of image.

2.Libjpeg-turbo Introduction

To test Guetzli performance, this article compares Guetzli with another commonly
used jpeg encoder, Libjpeg-turbo.

2.1 Libjpeg-turbo Installation

https://github.com/libjpeg-turbo/libjpeg-turbo

See Appendix B.

2.2 Libjpeg-turbo Features


https://github.com/libjpeg-turbo/libjpeg-turbo

Libjpeg-turbo is a branch of libjpeg that uses the SIMD instruction to speed up
baseline JPEG encoding and decoding, compressing bmp or ppm images into jpg
format.

3. Performance Testing

3.1 Testing Purposes

Compare Guetzli compressed images and Libjpeg-turbo compressed images with
the compression time and compression rate under different CPU and different
quality parameters.

3.2 Test Environment

System hardware environment

Platform Broadwell
Processor E5-2699 v4
Frequency 2.20 GHz
Max Turbo Frequency 3.50 GHz
Memory 8 *32GB 2133 MHz
FSB/QPI Frequency 9.6 GT/s
Thread(s) per Core 2

Sockets 2

Number of Core per 22

L1d Cache 32KB

L1i Cache 32KB

L2 Cache 256KB

L3 Cache (Total) 56320KB
SMT/MUNA/TURBO ON




Table 1 CPU1 information

Platform Skylake
Processor 8180
Frequency 2.5 GHz
Max Turbo Frequency 3.5GHz
Memory 12 *16GB 2666 MHz
FSB/QPI Frequency 10.4 GT/s
Thread(s) per Core 2
Sockets 2
Number of Core per 28

L1d Cache 32KB

L1i Cache 32KB

L2 Cache 1024KB
L3 Cache (Total) 39424KB
SMT/MUNA/TURBO ON

Table 2 CPU2 information
System Software Environment

OS CentOS 7.3.1611
kernel 3.10.0
Compiler gcc:4.8.5 20150623

Table 3 System software environment

3.3 Test Implementation

Image Pixel Size (byte)
nightshot_iso_100.bmp 192*144 82998
head.bmp 444*600 799254
lagochungara.bmp 871*573 1499022
ahom3.bmp 1024*768 2359350
earth.omp 2048*1024 6291510




Table 4 Image information
Test five different sized bmp photos in order. In same CPU, first use Libjpeg-turbo
to compress bmp image into jpg format, then use Guetzli to compress the second
time under different quality coefficients. Change CPU for repeated operation.
CPU selected are Intel E5-2688 V4 and Skylake 8180. Skylake is a higher
performance processor.
Due to the minimum of Guetzli quality parameters is 84, select 84,90,95 three
parameters for comparison.
Command line :
time -p ./cjpeg -outfile test.jpg image.bmp
time -p ./bin/Release/guetzli --quality 84 test.jpg output,jpg
Finally, change single process to multi-process testing.
Multi-process code :
#include <stdlib.h>
#include <omp.h>
int main()
{
#pragma omp parallel for
for(int i=0; i<=1000; i++)
{
/bin/Release/quetzli —quality 84 test.jpg output,jpg;

}

Command line :
g++ omp.cc -fopenup
Ja.out

3.4 Test Result

Single process



84 19196 0.89 3366 22.75%

82998 25368 0.03 4357 94.75% 90 19196 0.83 3624 16.82%
95 19196 0.83 3879 10.97%

84 36800 12.85 33795 13.49%

799254 25314 0.04 39063 95.11% 90 34848 11.28 35832 8.27%
95 36800 9.04 36900 5.54%

84 56040 26.12 95496 17.73%

E5-2699 V4 1499022 25330 0.04 116070 92.26% 90 55868 25.06 102766 11.46%
95 55868 21.28 109555 5.61%

84 78748 37.26 31022 23.56%

2359350 25316 0.04 40584 98.28% 90 77084 27.26 32562 19.77%
95 74344 23.87 33908 16.45%

84 182472 104.36 190895 19.49%

6291510 25314 0.05 237097 96.23% 90 182472 93.76 206747 12.80%
95 174792 93.27 220427 7.03%

Table 5 single-process E5-2699 V4 test results

0.74
82998 0.01 0.66
0.66
10.43
799254 0.01 8.89
7.13
21.73
SKL8180 1499022 0.01 20.19
18.57
30.68
2359350 0.02 22.30
19.63
91.95
6291510 0.02 81.50
81.46

Table 6 single-process Skylake 8180 test results
Multi-process

84 22.69 44.07 84 20.19 49.53

82998 90 20.55 48.66 82998 90 17.96 55.68
95 20.20 43.50 95 15.76 63.45

84 326.55 3.06 84 274.21 3.65

799254 90 280.34 3.57 799254 90 222.96 4.49
95 220.03 4.54 95 188.18 5.31

84 658.49 1.52 84 539.56 1.85

E5-2699 V4 1499022 90 618.13 1.62 SKL8180 1459022 90 510.93 1.96
95 561.95 1.78 95 468.20 2.14

84 892.16 112 84 781.23 1.28

2359350 90 653.18 1.53 2359350 90 565.02 1.76
95 575.17 1.74 95 429.91 2.33

84 2468.88 0.41 84 2272.84 0.44

6291510 90 2192.57 0.46 6291510 90 1989.99 0.50
95 2180.96 0.46 95 2002.44 0.50




3.5 Result Analysis
Analyzing data in section 3.4, the following graphs can be drawn:

Table 7 multi-process test results

e Image size comparison
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Figure 2 Image size comparison
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Figure 3 Image Size Comparison
According to Figure 2 and 3, Guetzli can compress additional 15% on the basis

of Libjpeg-turbo.

e Single-Process Compression Time Comparison (Different CPU)
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Figure 4 Single-Process Compression Time Comparison (Different CPU)
According to Figure 4, the larger the image size, the longer the Guetzli

compression time. Skylake 8180 can reduce the compression time by about 20%.

e Compression Time Comparison (Different quality)
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Figure 5 Compression Time Comparison (Different quality)

According to Figure 5, the greater the quality factor, the shorter the

compression time of Guetzli.

o Compression Rate Comparison
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Figure 6 Compression Rate Comparison



According to Figure 6, the higher the mass coefficient, the lower the
compression ratio.

e Memory Consumption Comparison
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Figure 7 Memory Consumption Comparison
According to Figure 7, The larger the image size, the more memory the guetzli
consumes. Libjpeg-turbo consumes less memory and is basically the same.

e Multi-Process Throughout Comparison
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Figure 8 Multi-Process Throughout Comparison
According to Figure 8, Skylake 8180 can increase throughput by about 20%.

4. VTune Analysis
4.1 VTune Installation

https://software.intel.com/en-us/-getting-started-with-intel-vtune-
amplifier-xe-2017

See Appendix C.
4.2 VTune Introduction

The VTune Amplifier Performance Analyzer is a product of Intel Parallel Studio and
is a commercial application for software performance analysis based on 32-bit and
64-bit x86 machines. It has GUI (graphical user interface) and command line, and
provides Linux or Microsoft Windows operating system version.


https://software.intel.com/en-us/-getting-started-with-intel-vtune-amplifier-xe-2017
https://software.intel.com/en-us/-getting-started-with-intel-vtune-amplifier-xe-2017

VTune Amplifier assists in various code analysis, including stack sampling,
thread analysis and hardware event sampling. The analyzer results include details
such as the time spent in each subroutine.

This paper focuses on analyzing the reason of longtime processing
through VTune hotspot analysis.

4.3 VTune Implementation

Use the command line on the root to test, copy the results to spark on the GUI to
display.

source amplxe-vars.sh

amplxe-cl -collect hotspots bin/Release/guetzli --quality 84 outputl.jpg
output2,jpg

amplxe-cl -report hotspots

4.4 VTune Result

e Summary

<no current project> - Intel VTune Amplifier
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Collection and Platform Info
This section provides information about this collection, including result set size and collection platform data.

Figure 9 Summary: CPU Usage Histogram
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Figure 10 Bottom-up : convolution CPU consumption time
As can be seen from Figure 10, convolution is the function that takes the longest

time.

o Caller/Callee
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Figure 11 Caller/Callee : the caller of function convolution
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Figure 12 Specific code
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5. Conclusion

Guetzli can compress the additional 20% to 30% on ordinary jpeg images,
and the the picture quality observed by naked eyes has not changed. But because
of its compression time is also lengthened, the performance is difficult to be
commercially used. According to the VTune hotspot analysis, if the cost of

convolution is decreased, the usability of Guetzli will be enhanced.
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7. Appendix

7.1 Guetzli Installation
1. copy source code
git clone git@github.com:google/quetzli.git

2.install libpng
3.make

7.2 Libjpeg-turbo Installation
1.copy source code
git clone https://github.com/libjpeg-turbo/libjpeg-turbo.git

2.install nasm
yum install nasm
3.mkdir build
4.autoreconf —fiv
5.cd build

6.sh ../configure
7.make


https://arxiv.org/pdf/1703.04421.pdf
mailto:git@github.com:google/guetzli.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git

7.3 VTune Installation
1.scp spark@dl-bj:/home/jimin/parallel_studio_xe_2018_beta_updatel_cluster
_edition.tgz .

7.4 Image example

earth.omp 2048*1024 6291510

}Iibjpeg-turbo (75)
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guetzli quality 4



